Главные формулы для егэ по профильной математике
Содержание:
- Формулы по базовой математике для ЕГЭ
- Дробно рациональные уравнения
- Тригонометрия
- Особенности уровней ЕГЭ по математике
- Несовместные события
- Теория к заданию 4 из ЕГЭ по математике (профильной)
- Противоположные события
- Независимые события
- Несовместные события
- Совместные события
- Формулы для базового ЕГЭ-2022 по математике
- Обратные тригонометрические функции и простейшие тригонометрические уравнения
- Основные формулы для профильного ЕГЭ
- Квадратное уравнение и формула разложения квадратного трехчлена на множители
- Независимые события
- Формулы для ОГЭ-2022 по математике
- Применение формул сокращенного умножения
- Задача №17, экономическая
Формулы по базовой математике для ЕГЭ
Разработчики КИМ считают, что для решения задач математики ЕГЭ базового уровня достаточно знания формул, представленных в справочных материалах – они выдаются на экзамене в индивидуальном комплекте вместе с КИМ. В «официальную шпаргалку», которой можно пользоваться во время проведения ЕГЭ, входят:
- таблица квадратных чисел от 0 до 99;
- свойства арифметического квадратного корня;
- формулы сокращенного умножения;
- корни квадратного уравнения;
- свойства степени и логарифма;
- теорема Пифагора;
- формула расчета длины окружности и площади круга;
- расчет средней линии треугольника и трапеции;
- радиус вписанной и описанной окружности правильного треугольника;
- формулы расчета площади планиметрических фигур;
- вычисление поверхностей и объемов тел;
- основные тригонометрические функции и тождества;
- график линейной функции;
- геометрический смысл производной.
Понять, нужны ли еще какие-то формулы для ЕГЭ по математике, поможет решение тренировочных тестов, например, содержащихся в открытом банке заданий на сайте ФИПИ. Для подстраховки можно изучить КЭС (кодификатор элементов содержания), актуальный в текущем учебном году. В нем перечислены все темы, которые выносятся на экзамен.
Дробно рациональные уравнения
- Если дробь равна нулю, то числитель равен нулю, а знаменатель не равен нулю.
- Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно-рациональным.
Чтобы решить дробно рациональное уравнение, необходимо:
- Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ)
- Найти общий знаменатель дробей, входящих в уравнение;
- Умножить обе части уравнения на общий знаменатель;
- Решить получившееся целое уравнение;
- Исключить из его корней те, которые не удовлетворяют условию ОДЗ.
Если в уравнении участвуют две дроби и числители их равные выражения, то знаменатели можно приравнять друг к другу и решить полученное уравнение, не обращая внимание на числители. НО учитывая ОДЗ всего первоначального уравнения
Тригонометрия
Пусть имеется прямоугольный треугольник:
Тогда, определение синуса:
Определение косинуса:
Определение тангенса:
Определение котангенса:
Основное тригонометрическое тождество:
Простейшие следствия из основного тригонометрического тождества:
Синус двойного угла:
Косинус двойного угла:
Тангенс двойного угла:
Котангенс двойного угла:
Тригонометрические формулы сложения
Синус суммы:
Синус разности:
Косинус суммы:
Косинус разности:
Тангенс суммы:
Тангенс разности:
Котангенс суммы:
Котангенс разности:
Тригонометрические формулы преобразования суммы в произведение
Сумма синусов:
Разность синусов:
Сумма косинусов:
Разность косинусов:
Сумма тангенсов:
Разность тангенсов:
Сумма котангенсов:
Разность котангенсов:
Произведение синусов:
Произведение синуса и косинуса:
Произведение косинусов:
Формулы понижения степени
Формула понижения степени для синуса:
Формула понижения степени для косинуса:
Формула понижения степени для тангенса:
Формула понижения степени для котангенса:
Формула половинного угла для тангенса:
Формула половинного угла для котангенса:
Формулы приведения задаются в виде таблицы:
Особенности уровней ЕГЭ по математике
В 2015 году ЕГЭ по математике разделили на базовый и профильный уровни. Это упростило жизнь выпускникам, которые не планируют поступать на специальности, связанные с математикой. Если ЕГЭ по математике нужен только для получения аттестата, можно сдать его облегченную версию, оставив время и силы для профильных экзаменов.
Базовый уровень ЕГЭ по математике
Как устроен базовый ЕГЭ по математике? Экзамен идет 180 минут, он состоит из 21 задания, за каждое из которых можно получить 1 балл. Этот экзамен единственный, который переводится не в 100-бальную систему, а в оценки.
Пока перевод баллов ЕГЭ по математике базового уровня в оценки не опубликован ФИПИ, но мы добавим его в статью, как только появится официальная информация.
В ЕГЭ по математике базового уровня 6 тематических блоков:
Тематические блоки, ЕГЭ по математике 2022, базовый уровень
Подробнее про базовый ЕГЭ по математике, включая разбор всех заданий, читайте здесь, а мы перейдём к профильному.
Профильный уровень ЕГЭ по математике
Данный экзамен, как и остальные ЕГЭ, переводится в 100-бальную систему.
Пока перевод баллов ЕГЭ по математике профильного уровня в 100-бальную систему пока не опубликован ФИПИ. Мы добавим его в статью, как только появится официальная информация.
Экзамен состоит из двух частей: Часть 1 с кратким ответом, а Часть 2 — с развернутым. Длится он 235 минут. Всего есть 18 заданий, которые разделены на 3 блока: алгебра, геометрия и реальная математика. Максимальное количество первичных баллов — 31.
База, профиль — неважно, к какому именно уровню вы готовитесь. В любом случае надо не только правильно решить каждое задание, но и оформить его так, чтобы проверяющие ни к чему не придрались
Нарисовать и описать график, расписать решение уравнения или задачи… И это не все: нужно еще и внести ответы в бланк без ошибок. И все это — за ограниченный период времени! Так можно перенервничать и запороть даже самую простую задачку. А на ЕГЭ — каждый балл на счету.Поэтому на своих занятиях я сразу показываю своим ученикам, как правильно оформлять каждое задание в ЕГЭ по математике. Мы разбираем все критерии и учимся правильно отвечать на вопросы. А еще я всегда помогаю ученикам закрыть пробелы в знаниях и объясняю сложные темы столько раз, сколько нужно. И куда же без лайфхаков? Всегда рассказываю лучший способ решения типичных заданий. Так что мои ученики приходят на экзамены подготовленными и не нервничают, когда видят задачу. Хотите также? Приходите ко мне на курсы подготовки к ЕГЭ по математике — научу!
Несовместные события
Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию
$А$, так и событию $В$. (События, которые не могут произойти одновременно)
Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих
событий:
$Р(А+В)=Р(А)+Р(В)$
На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность
того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему
«Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение:
Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения»,
ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух
несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:
$Р(А+В)=Р(А)+Р(В)$
$Р = 0,3+0,18=0,48$
Ответ: $0,48$
Теория к заданию 4 из ЕГЭ по математике (профильной)
Вероятностью события $А$ называется отношение числа благоприятных для $А$ исходов к числу всех
равновозможных исходов
$P(A)={m}/{n}$, где $n$ – общее количество возможных исходов, а $m$ – количество исходов, благоприятствующих событию
$А$.
Вероятность события — это число из отрезка $$
В фирме такси в наличии $50$ легковых автомобилей. $35$ из них чёрные, остальные — жёлтые.
Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета.
Решение:
Найдем количество желтых автомобилей:
$50-35=15$
Всего имеется $50$ автомобилей, то есть на вызов приедет одна из пятидесяти. Желтых автомобилей $15$,
следовательно, вероятность приезда именно желтого автомобиля равна ${15}/{50}={3}/{10}=0,3$
Ответ:$0,3$
Противоположные события
Два события называются противоположными, если в данном испытании они несовместимы и одно из них обязательно
происходит. Вероятности противоположных событий в сумме дают 1.Событие, противоположное событию $А$, записывают
${(А)}{-}$.
$Р(А)+Р{(А)}{-}=1$
Независимые события
Два события $А$ и $В$ называются независимыми, если вероятность появления каждого из них не зависит от того,
появилось другое событие или нет. В противном случае события называются зависимыми.
Вероятность произведения двух независимых событий $A$ и $B$ равна произведению этих
вероятностей:
$Р(А·В)=Р(А)·Р(В)$
Иван Иванович купил два различных лотерейных билета. Вероятность того, что выиграет первый
лотерейный билет, равна $0,15$. Вероятность того, что выиграет второй лотерейный билет, равна $0,12$. Иван Иванович
участвует в обоих розыгрышах. Считая, что розыгрыши проводятся независимо друг от друга, найдите вероятность того,
что Иван Иванович выиграет в обоих розыгрышах.
Решения:
Вероятность $Р(А)$ — выиграет первый билет.
Вероятность $Р(В)$ — выиграет второй билет.
События $А$ и $В$ – это независимые события. То есть, чтобы найти вероятность того, что они произойдут оба
события, нужно найти произведение вероятностей
$Р(А·В)=Р(А)·Р(В)$
$Р=0,15·0,12=0,018$
Ответ: $0,018$
Несовместные события
Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию
$А$, так и событию $В$. (События, которые не могут произойти одновременно)
Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих
событий:
$Р(А+В)=Р(А)+Р(В)$
На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность
того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему
«Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение:
Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения»,
ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух
несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:
$Р(А+В)=Р(А)+Р(В)$
$Р = 0,3+0,18=0,48$
Ответ: $0,48$
Совместные события
Два события называются совместными, если появление одного из них не исключает появление другого в одном и том же
испытании. В противном случае события называются несовместными.
Вероятность суммы двух совместных событий $A$ и $B$ равна сумме вероятностей этих событий минус
вероятность их произведения:
$Р(А+В)=Р(А)+Р(В)-Р(А·В)$
В холле кинотеатра два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится
кофе, равна $0,6$. Вероятность того, что кофе закончится в обоих автоматах, равна $0,32$. Найдите вероятность того,
что к концу дня кофе закончится хотя бы в одном из автоматов.
Решение:
Обозначим события, пусть:
$А$ = кофе закончится в первом автомате,
$В$ = кофе закончится во втором автомате.
Тогда,
$A·B =$ кофе закончится в обоих автоматах,
$A + B =$ кофе закончится хотя бы в одном автомате.
По условию, $P(A) = P(B) = 0,6; P(A·B) = 0,32$.
События $A$ и $B$ совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий,
уменьшенной на вероятность их произведения:
$P(A + B) = P(A) + P(B) − P(A·B) = 0,6 + 0,6 − 0,32 = 0,88$
Ответ: $0,88$
Формулы для базового ЕГЭ-2022 по математике
Формулы сокращённого умножения
`(a + b)^2=a^2 + 2ab + b^2` | |
`(a − b)^2=a^2 − 2ab + b^2` | |
`a^2 − b^2=(a + b)(a − b)` | |
`a^3 + b^3=(a + b)(a^2 − ab + b^2)` | |
`a^3 − b^3=(a − b)(a^2 + ab + b^2)` | |
`(a + b)^3=a^3 + 3a^2b + 3ab^2 + b^3` | Эти две формулы заучивать не обязательно, но желательно |
`(a − b)^3=a^3 − 3a^2b + 3ab^2 − b^3` |
Прогрессии
Геометрическая прогрессия:
`b_n=b_(n-1)*q` |
`b_n=b_1*q^(n-1)` |
`S_n=((q^n-1)*b_1)/(q-1)` |
Бесконечно убывающая: `S=b_1/(1-q)` |
Вероятность
Вероятность события A: | `P(A)=m/n` | m — число благоприятных событийn — общее число событий |
События происходят A и B происходят одновременно | `A*B` | |
Независимые события: | `P(A*B)=P(A)*P(B)` | Когда вероятность одного события (А) не зависит от другого события (B) |
Зависимые события: | `P(A*B)=P(A)*P(B|A)` | `P(B|A)` — вероятность события B при условии, что событие A наступило |
Происходит или событие A, или B | `A+B` | |
Несовместные события: | `P(A+B)=P(A)+P(B)` | Когда невозможно наступление обоих событий одновременно, т.е. `P(A*B)=0` |
Совместные события: | `P(A+B)=P(A)+P(B)-P(A*B)` | Когда оба события могут наступить одновременно |
Свойства степеней
`a^0=1` | `a^1=a` |
`a^(-1)=1/a` | `a^(-n)=1/a^n` |
`a^(1/2)=sqrt(a)` | `a^(1/n)=root(n)(a)` |
`a^m*a^n=a^(m+n)` | `a^m/a^n=a^(m-n)` |
`(a*b)^n=a^n*b^n` | `(a/b)^n=a^n/b^n` |
`(a^m)^n=a^(m*n)` | `a^(m/n)=root(n)(a^m)` |
Свойства логарифмов
`log_ab=c«a^c=b` | Определение логарифма |
`log_a1=0` | |
`log_aa=1` | |
`log_a(b*c)=log_ab+log_ac` | |
`log_a(b/c)=log_ab-log_ac` | |
`log_ab^n=n*log_ab` | |
`log_(a^m)b=1/m*log_ab` | |
`log_ab=1/(log_ba)` | |
`log_ab=(log_cb)/(log_ca)` | |
`a^(log_cb)=b^(log_ca)` | |
`a^(log_ab)=b` |
Геометрия
Планиметрия (2D)
Тригонометрия: | `sinA=a/c` `cosA=b/c` | ||
`text(tg)A=sinA/cosA=a/b` | |||
Теорема косинусов: | `c^2=a^2+b^2-2ab*cosC` | ||
Теорема синусов: | `a/sinA=b/sinB=c/sinC=2R` | где R — радиус описанной окружности | |
Уравнение окружности: | `(x-x_0)^2+(y-y_0)^2=R^2` | где `(x_0;y_0)` — координаты центра окружности | |
Соотношение вписанного и центрального углов: | `beta=alpha/2=(uualpha)/2` | ||
Описанная окружность, треугольник: | `R=(abc)/(4S)` | См. также теорему синусов. Центр лежит на пересечении срединных перпендикуляров. | |
Вписанная окружность, треугольник: | `r=S/p` | где p — полупериметр многоугольника. Центр лежит на пересечении биссектрис. | |
Описанная окружность, четырёхугольник: | `alpha+gamma=beta+delta=180^circ` | ||
Вписанная окружность, четырёхугольник: | `a+c=b+d` | ||
Свойство биссектрисы: | `a/x=b/y` | ||
Теорема о пересекающихся хордах: | `AM*BM=CM*DM` | Эти теоремы необходимо уметь выводить | |
Теорема об угле между касательной и хордой: | `alpha=1/2uuAB` | ||
Теорема о касательной и секущей: | `CM^2=AM*BM` | ||
Теорема об отрезках касательных: | `AB=AC` |
Площади фигур:
Окружность: | `S=pir^2` | |
Треугольник: | `S=1/2ah` | |
Параллелограмм: | `S=ah` | |
Четырёхугольник: | `S=1/2d_1d_2sinvarphi` | У ромба `varphi=90^@` |
Трапеция: | `S=(a+b)/2*h` |
Обратные тригонометрические функции и простейшие тригонометрические уравнения
Арккосинус
Если, $|а|≤1$, то $arccos а$ – это такое число из отрезка $$, косинус которого равен $а$.
Если, $|а|≤1$, то $arccos а = t ⇔ \{\table \cos (t)=a; \0≤t≤π;$
$arcos(-a) = π-arccosa$, где $0≤а≤1$
Уравнение вида $cos t=a$, eсли, $|а|≤1$, имеет решение
$t=±arccos a+2πk; k∈Z$
Частные случаи
$cos t =1, t = 2πk;k∈Z$
$cos t = 0, t = {π}/{2}+πk;k∈Z$
$cos t = -1, t=π+2πk;k∈Z$
Найдите наименьший положительный корень уравнения $сos{2πx}/{3}=-{√3}/{2}$
$сos{2πx}/{3}=-{√3}/{2}$
${2πx}/{3}=±arccos(-{√3}/{2})+2πk;kϵZ$
${2πx}/{3}=±(π-arccos{√3}/{2})+2πk;kϵZ$
${2πx}/{3}=±(π-{π}/{6})+2πk;kϵZ$
${2πx}/{3}=±{5π}/{6} +2πk;kϵZ$
Далее избавимся от всех величин, мешающих иксу. Для этого разделим обе части уравнения на ${2π}/{3}$
$x=±{5π·3}/{6·2π} +{2π·3}/{2π}k$
$x=±1,25+3k$
Чтобы найти наименьший положительный корень, подставим вместо $k$ целые значения
$k=0$
$x_1= -1,25$
$x_2=1,25$
$к=1$
$х_1=3-1,25=1,75$
$х_2=3+1,25=4,25$
Нам подходит $1,25$ – это и есть результат
Ответ: $1,25$
Арксинус
Если, $|а|≤1$, то $arcsin a$ – это такое число, из отрезка $[-{π}/{2};{π}/{2}]$, синус которого равен $а$.
Если, $|а|≤1$, то $arcsin a = t ⇔ \{\table \sint=a; \-{π}/{2}≤t≤{π}/{2};$
$arcsin(-a)= — arcsin a$, где $0≤а≤1$
Если, $|а|≤1$, то уравнение $sin t =a$ можно решить и записать двумя способами:
$1. t_1 = arcsin a+2πk;k∈Z$
$t_2 = (π- arcsin a)+ 2πk;k∈Z$
$2. t=(-1)^n arcsin a+πn; n∈Z$
$3.$ Частные случаи
$sin t = 0, t=πk;k∈Z$
$sin t = 1, t={π}/{2}+2πk;k∈Z$
$sin t = -1,t=-{π}/{2}+2πk;k∈Z$
Арктангенс
$arctg a$ — это такое число, из отрезка $[-{π}/{2};{π}/{2}]$, тангенс которого равен $а$.
$arctg a = t ⇔ \{\table \tgt=a; \-{π}/{2}≤t≤{π}/{2};$
$arctg(-a)= — arctg a$
Основные формулы для профильного ЕГЭ
Выпускники, планирующие сдавать профиль, ставятся в более жесткие условия, чем те, кто выбрал базовый уровень. Учитывая то, что они видят перспективу своего дальнейшего обучения по направлениям, тесно или напрямую связанным с математикой, к их знаниям предъявляются повышенные требования. В частности, на официальные справочные материалы особенно рассчитывать не приходится. Все, что в них есть, это 5 тригонометрических тождеств.
Основываясь на данных, опубликованных на сайте ФИПИ, с большой долей вероятности потребуется знание следующих формул для сдачи ЕГЭ по профильной математике:
- правила сокращенного умножения;
- арифметическая и геометрическая прогрессии;
- основы вероятностной теории;
- свойства степеней и логарифмов;
- азы тригонометрии (формулы двойного угла, суммы и разности аргументов; алгоритм преобразования разности и суммы в произведение; обратные функции);
- производная (правила дифференцирования, элементарнее функции и уравнение касательной);
- первообразная;
- двухмерная планиметрия;
- правила нахождения площадей геометрических фигур;
- трехмерная стереометрия.
Опытные учителя и репетиторы собрали все формулы по математике, которые приходилось использовать на ЕГЭ в последние три года:
- ЕГЭ по математике – формулы для алгебры и начал анализа
- Формулы ЕГЭ – математика, раздел геометрия
Материалы для скачивания – в формате pdf.
Выученные назубок формулы к ЕГЭ по математике – это только часть пути к успешной сдаче, надо еще научиться правильно применять их. Хорошую практику даст решение сложных задач.
Квадратное уравнение и формула разложения квадратного трехчлена на множители
Пусть квадратное уравнение имеет вид:
Тогда дискриминант находят по формуле:
Если D > 0, то квадратное уравнение имеет два корня, которые находят по формуле:
Если D = 0, то квадратное уравнение имеет один корень (его кратность: 2), который ищется по формуле:
Если D < 0, то квадратное уравнение не имеет корней. В случае когда квадратное уравнение имеет два корня, соответствующий квадратный трехчлен может быть разложен на множители по следующей формуле:
Если квадратное уравнение имеет один корень, то разложение соответствующего квадратного трехчлена на множители задается следующей формулой:
Только в случае если квадратное уравнение имеет два корня (т.е. дискриминант строго больше ноля) выполняется Теорема Виета. Согласно Теореме Виета, сумма корней квадратного уравнения равна:
Произведение корней квадратного уравнения может быть вычислено по формуле:
Парабола
График параболы задается квадратичной функцией:
При этом координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины:
Игрек вершины параболы:
Независимые события
Два события $А$ и $В$ называются независимыми, если вероятность появления каждого из них не зависит от того,
появилось другое событие или нет. В противном случае события называются зависимыми.
Вероятность произведения двух независимых событий $A$ и $B$ равна произведению этих
вероятностей:
$Р(А·В)=Р(А)·Р(В)$
Иван Иванович купил два различных лотерейных билета. Вероятность того, что выиграет первый
лотерейный билет, равна $0,15$. Вероятность того, что выиграет второй лотерейный билет, равна $0,12$. Иван Иванович
участвует в обоих розыгрышах. Считая, что розыгрыши проводятся независимо друг от друга, найдите вероятность того,
что Иван Иванович выиграет в обоих розыгрышах.
Решения:
Вероятность $Р(А)$ — выиграет первый билет.
Вероятность $Р(В)$ — выиграет второй билет.
События $А$ и $В$ – это независимые события. То есть, чтобы найти вероятность того, что они произойдут оба
события, нужно найти произведение вероятностей
$Р(А·В)=Р(А)·Р(В)$
$Р=0,15·0,12=0,018$
Ответ: $0,018$
Формулы для ОГЭ-2022 по математике
Формулы сокращённого умножения
`(a + b)^2=a^2 + 2ab + b^2` | |
`(a − b)^2=a^2 − 2ab + b^2` | |
`a^2 − b^2=(a + b)(a − b)` | |
`a^3 + b^3=(a + b)(a^2 − ab + b^2)` | |
`a^3 − b^3=(a − b)(a^2 + ab + b^2)` | |
`(a + b)^3=a^3 + 3a^2b + 3ab^2 + b^3` | Эти две формулы заучивать не обязательно, но желательно |
`(a − b)^3=a^3 − 3a^2b + 3ab^2 − b^3` |
Прогрессии
Геометрическая прогрессия:
`b_n=b_(n-1)*q` |
`b_n=b_1*q^(n-1)` |
`S_n=((q^n-1)*b_1)/(q-1)` |
Бесконечно убывающая: `S=b_1/(1-q)` |
Вероятность
Вероятность события A: | `P(A)=m/n` | m — число благоприятных событийn — общее число событий |
События происходят A и B происходят одновременно | `A*B` | |
Независимые события: | `P(A*B)=P(A)*P(B)` | Когда вероятность одного события (А) не зависит от другого события (B) |
Зависимые события: | `P(A*B)=P(A)*P(B|A)` | `P(B|A)` — вероятность события B при условии, что событие A наступило |
Происходит или событие A, или B | `A+B` | |
Несовместные события: | `P(A+B)=P(A)+P(B)` | Когда невозможно наступление обоих событий одновременно, т.е. `P(A*B)=0` |
Совместные события: | `P(A+B)=P(A)+P(B)-P(A*B)` | Когда оба события могут наступить одновременно |
Свойства степеней
`a^0=1` | `a^1=a` |
`a^(-1)=1/a` | `a^(-n)=1/a^n` |
`a^(1/2)=sqrt(a)` | `a^(1/n)=root(n)(a)` |
`a^m*a^n=a^(m+n)` | `a^m/a^n=a^(m-n)` |
`(a*b)^n=a^n*b^n` | `(a/b)^n=a^n/b^n` |
`(a^m)^n=a^(m*n)` | `a^(m/n)=root(n)(a^m)` |
Геометрия
Планиметрия (2D)
Тригонометрия: | `sinA=a/c` `cosA=b/c` | ||
`text(tg)A=sinA/cosA=a/b` | |||
Теорема косинусов: | `c^2=a^2+b^2-2ab*cosC` | ||
Теорема синусов: | `a/sinA=b/sinB=c/sinC=2R` | где R — радиус описанной окружности | |
Уравнение окружности: | `(x-x_0)^2+(y-y_0)^2=R^2` | где `(x_0;y_0)` — координаты центра окружности | |
Соотношение вписанного и центрального углов: | `beta=alpha/2=(uualpha)/2` | ||
Описанная окружность, треугольник: | `R=(abc)/(4S)` | См. также теорему синусов. Центр лежит на пересечении срединных перпендикуляров. | |
Вписанная окружность, треугольник: | `r=S/p` | где p — полупериметр многоугольника. Центр лежит на пересечении биссектрис. | |
Описанная окружность, четырёхугольник: | `alpha+gamma=beta+delta=180^circ` | ||
Вписанная окружность, четырёхугольник: | `a+c=b+d` | ||
Свойство биссектрисы: | `a/x=b/y` | ||
Теорема о пересекающихся хордах: | `AM*BM=CM*DM` | Эти теоремы необходимо уметь выводить | |
Теорема об угле между касательной и хордой: | `alpha=1/2uuAB` | ||
Теорема о касательной и секущей: | `CM^2=AM*BM` | ||
Теорема об отрезках касательных: | `AB=AC` |
Площади фигур:
Применение формул сокращенного умножения
1. Квадрат суммы раскладывается на квадрат первого числа плюс удвоенное произведение первого числа на второе число и плюс квадрат второго числа.
$(a+b)^2=a^2+2ab+b^2$
2. Квадрат разности раскладывается на квадрат первого числа минус удвоенное произведение первого числа на второе и плюс квадрат второго числа.
$(a-b)^2=a^2-2ab+b^2$
3. Разность квадратов раскладывается на произведение разности чисел и их сумму.
$a^2-b^2=(a+b)(a-b)$
4. Куб суммы равен кубу первого числа плюс утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа плюс куб второго числа.
$(a+b)^3=a^3+3a^2b+3ab^2+b^3$
5. Куб разности равен кубу первого числа минус утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа и минус куб второго числа.
$(a-b)^3=a^3-3a^2b+3ab^2-b^3$
6. Сумма кубов равна произведению суммы чисел на неполный квадрат разности.
$a^3+b^3=(a+b)(a^2-ab+b^2)$
7. Разность кубов равна произведению разности чисел на неполный квадрат суммы.
$a^3-b^3=(a-b)(a^2+ab+b^2)$
Задача №17, экономическая
Стандартное начало условия:
- 1-го числа каждого месяца долг возрастает на `color(green)(r%)`.
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга.
- 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.
Основная идея решения:
- каждый месяц (15-го числа) долг должен уменьшаться на одну и ту же величину, т.е. на `1/n` часть изначального долга, т.е. на `color(blue)(S/n)`
- каждый месяц (1-го числа) банк увеличивает остаток долга на `color(green)(r%)`.
- каждый месяц (2-14-го числа) клиент выплачивает начисленные проценты (пункт 2) и ежемесячную часть долга (пункт 1).
Составляем таблицу платежей по месяцам:
Взятие кредита: | |
15 декабря: | Долг = `S` рублей. |
1-й месяц: | |
1 января | Банк начисляет проценты = `color(green)(S*r)` |
Долг = `S + color(green)(S*r)` | |
2-14 января | Платим `color(green)(S*r) + color(blue)(S/n)` |
Долг = « `– [ color(green)(S*r) + color(blue)(S/n) ] = S-color(blue)(S/n) = (n-1)/n*S` | |
2-й месяц: | |
1 февраля | Банк начисляет проценты = `color(green)(obrace((n-1)/n*S)^(«Предыд.долг»)*r)` |
Долг = `(n-1)/n*S+` `color(green)((n-1)/n*S*r)` | |
2-14 февраля | Платим `color(green)((n-1)/n*S*r)+` `color(blue)(S/n)` |
Долг = `[(n-1)/n*S +` `color(green)((n-1)/n*S*r)]–` `[color(green)((n-1)/n*S*r)+` `color(blue)(S/n)]=` `(n-1)/n*S — color(blue)(S/n)=` `(n-2)/n*S` | |
3-й месяц: | |
1 марта | Банк начисляет проценты = `color(green)((n-2)/n*S*r)` |
Долг = `(n-2)/n*S + color(green)((n-2)/n*S*r)` | |
2-14 марта | Платим `color(green)((n-2)/n*S*r) + color(blue)(S/n)` |
Долг = `[(n-2)/n*S + color(green)((n-2)/n*S*r)] – [color(green)((n-2)/n*S*r) + color(blue)(S/n)] = (n-2)/n*S — color(blue)(S/n) = (n-3)/n*S` | |
(n-1)-й месяц: | Остаток долга = `2/n*S` |
1 мартобря | Банк начисляет проценты = `color(green)(2/n*S*r)` |
Долг = `2/n*S + color(green)(2/n*S*r)` | |
2-14 мартобря | Платим `color(green)(2/n*S*r) + color(blue)(S/n)` |
Долг = `[2/n*S + color(green)(2/n*S*r)] – [color(green)(2/n*S*r) + color(blue)(S/n)] = 2/n*S — color(blue)(S/n) = 1/n*S` | |
n-й месяц: | Остаток долга = `1/n*S` |
1 апребря | Банк начисляет проценты = `color(green)(1/n*S*r)` |
Долг = `1/n*S + color(green)(1/n*S*r)` | |
2-14 апребря | Платим `color(green)(1/n*S*r) + color(blue)(S/n)` |
Долг = `[1/n*S + color(green)(1/n*S*r)] – [color(green)(1/n*S*r) + color(blue)(S/n)] = 1/n*S — color(blue)(S/n) = 0` |