Изопроцессы, работа в термодинамике, первый закон термодинамики

Содержание:

Содержание заданий о Солнечной системе

Прежде чем приступать к рассмотрению задания по Солнечной системе вспомним некоторые основные сведения. Вот перечень некоторых фактов, которые необходимо знать:

  1. Порядок расположения планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун;
  2. Самая большая планета Солнечной системы – это Юпитер;
  3. Солнечная система содержит 8 планет, которые делятся на две группы. В первую группу входят планеты земной группы – это Меркурий, Венера, Земля, Марс. Во вторую группу входят газовые гиганты: Юпитер, Сатурн, Уран и Нептун; Логично, что газовые гиганты имеют меньшую плотность, чем твердые;
  4. Между Марсом и Юпитером находится пояс астероидов;
  5. Практически все планеты обладают спутниками; для Земли – это Луна; не имеют спутников – Венера и Меркурий; Существует множество факторов, влияющих на наличие спутников у планеты, но основным является гравитация, то есть, чем больше масса планеты, тем наиболее вероятно у нее есть спутники. Например, Юпитер самая большая планета Солнечной системы и у него больше всех спутников.
  6. Наличие атмосферы. Все планеты Солнечной системы имеют атмосферу, кроме Меркурия.
  7. Все планеты вращаются по эллиптическим орбитам; плоскость вращения планеты Земля называется эклиптикой;
  8. Один оборот Земля делает за сутки, одно вращение вокруг Солнца – за год;
  9. Наклон оси планет к плоскости вращения определяет смену времен года;
  10. Последние исследования обнаружили еще один пояс астероидов за Нептуном, а ранее считавшийся планетой Плутон оказался по своим параметрам сравним с большими астероидами этого пояса, поэтому его перестали признавать планетой.

Для того чтобы двигаться дальше, необходимо познакомиться с некоторыми формулами важными при решении заданий по тематике планет. Причем практически все эти формулы известны из курса физики. Вот эти формулы:

где \(R\) – радиус планеты.

Масса планеты

где \(\rho\) – плотность планеты.

Ускорение свободного падения для любой планеты, любого тела

где \(M\) – масса планеты,

Первая космическая скорость

Вторая космическая скорость

Используя эти формулы можно легко решать задачи посвященные планетам, спутникам.

Физика 11 класс. Все формулы и определения

Формулы 7 класс
 Формулы 8 класс
 Формулы 9 класс
 Формулы 10 класс

В пособии «Физика 11 класс. Все формулы и определения» представлено 30 тем за 11 класс.

Содержание (быстрый переход):

1 Магнитное поле и его свойства

Магнитное поле и его свойства. Опыт Ампера. Магнитное поле. Вектор магнитной индукции. Модуль вектора магнитной индукции

Сила Ампера. Сила Лоренца. Движение q в однородном магнитном поле.

Явление электромагнитной индукции (ЭМИ). Магнитный поток. Правило Ленца. Закон ЭМИ.

Самоиндукция. Проявление самоиндукции. Индуктивность. Энергия МП тока. Теория Максвелла

5 Механические колебания

Механические колебания. Условия возникновения свободных колебаний. Характеристики механических колебаний. Математический маятник. Гармонические колебания.

Фаза колебаний. Сдвиг фаз колебаний. Затухающие и вынужденные колебания

Механические волны. Причины возникновения. Продольные волны. Распространение волн в упругих средах

Колебательный контур. Электромагнитные колебания. Аналогия. Формула Томсона

Переменный ток. Активное сопротивление. Средняя мощность. Резонанс

Генерирование электроэнергии. Индукционный генератор переменного тока. Передача электроэнергии

Трансформаторы. Устройство трансформатора. Работа нагруженного трансформатора и на холостом ходу

Электромагнитные волны. Опыты Герца.

Принципы радиосвязи. Амплитудная модуляция. Детектирование. Распространение радиоволн. Радиолокация

Световые волны.

Закон отражения света. Закон преломления света

Линза. Виды линз. Оптическая сила линз. Формула тонкой линзы. Построение изображения в линзах.

Свойства световых волн. Опыты Ньютона. Интерференция света. Дифракция. Естественный свет

18 Элементы теории относительности

Элементы теории относительности. Принцип относительности. Постулаты теории. Основные следствия из теории относительности

Излучение и спектры. Виды излучений. Виды спектров. Спектральный анализ

Виды электромагнитных излучений. Инфракрасное и ультрафиолетовое излучения. Рентгеновские лучи.

Световые кванты. Фотоэффект. Законы фотоэффекта.

Теория фотоэффекта. Формула Планка. Уравнение Эйнштейна. Фотоны. Корпускулярно-волновой дуализм света.

Строение атома. Опыт Резерфорда. Планетарная модель атома и ее противоречия. Постулаты Бора.

Лазеры. Индуцированное излучение. Свойства лазерного излучения. Принцип действия лазера

25 Методы наблюдения и регистрации элементарных частиц

Методы наблюдения и регистрации элементарных частиц. Счетчик Гейгера. Камера Вильсона. Пузырьковая камера. Метод толстослойных фотоэмульсий

Явление радиоактивности. Опыт Резерфорда. Свойства излучений. Закон радиоактивного распада. Изотопы.

Строение атомного ядра. Открытие нейтрона. Модель ядра. Энергия связи атомных ядер. Ядерные реакции

Деление ядер урана. Механизм деления урана. Цепные ядерные реакции. Образование плутония

Ядерный реактор. Термоядерные реакции

30 Биологическое действие радиоактивных излучений

Биологическое действие радиоактивных излучений. Поглощенная доза излучений. Экспозиционная доза. Эквивалентная доза поглощенного излучения. Радиационные эффекты

Формулы 7 класс
 Формулы 8 класс
 Формулы 9 класс
 Формулы 10 класс

УНПК МФТИ

Подготовительные курсы УНПК МФТИ уже более 27 лет готовят учеников для поступления в лучшие ВУЗы страны. По физике проводится курс онлайн-подготовки к ЕГЭ.

Преподаватели — эксперты ЕГЭ и члены жюри Всероссийских олимпиад. Они развивают глубокое понимание предмета вместо нарешивания тестов и обучают по программе с интегральным межпредметным взаимодействием.

В семестр вас ждет 20 занятий по 3 ак.ч. 1 или 2 раза в неделю. При записи на курс каждый школьник проходит распределительное тестирование.

В процессе обучения производится непрерывный сбор результатов и контроль прогресса обучения. Все эти данные доступны в личном кабинете ученику и родителю.

Структура ОГЭ по физике

Для того, чтобы понять, сложен ли экзамен по физике, нужно разобраться с его структурой. Экзамен по физике состоит из двух частей. В первой части есть 19 заданий с кратким ответом: 1-16 и 18-20. Во вторую часть входят 6 заданий с развернутым ответом: 21-25 и 17 (там необходимо провести лабораторную работу и составить отчет по ней).

Первая часть ОГЭ по физике

Первая часть экзамена разделена на 4 блока, которые встретятся также и на ЕГЭ по физике — это механические, тепловые, электромагнитные и квантовые явления.

Стоит выделить первое задание экзамена. Оно посвящено физическим понятиям. В нем необходимо сопоставить физические величины с их единицами измерения или приборами для их измерения. Это задание охватывает сразу все блоки и оценивается в 2 балла. Также в экзамене встречаются теоретические задания повышенной сложности (2 балла), они бывают 2 типов: 

  1. Задания формата «2 из 5». В этом задании описывается модель или процесс. Нужно выбрать два верных утверждения, описывающих ее. Если одно утверждение выбрано верно, а другое — нет, поставят 1 балл.
  2. Задания на характер изменения величин. В нем описывается модель, затем ее начальные параметры меняют. Необходимо определить, как изменятся (увеличатся, уменьшатся или не изменятся) две искомые величины. Один балл можно получить, если вы верно определили изменение только одной величины.

Еще в каждом блоке есть расчетная задача повышенной сложности, за нее можно получить 1 балл.

Вторая часть ОГЭ по физике

Вторая часть состоит из 6 заданий с развернутым ответом. Решение каждого задания необходимо оформлять в бланке ответов №2. Их проверят вручную эксперты ФИПИ. 

  • Задание №17 — это экспериментальное задание (лабораторная работа), за которую вы можете получить 3 балла. На курсе подготовки к ОГЭ мы с учениками работаем с каждым комплектом оборудования, который будет у них на экзамене, и отрабатываем все типы лабораторных работ. 
  • Задание №21 — это задача на работу с текстом. Вам необходимо проанализировать информацию и применить ее на практике.  
  • Задание №22 — качественная задача. Вам нужно с физической точки зрения объяснить явление или эксперимент, за это задание вы можете получить максимум 2 балла. 
  • Задания 23, 24 и 25 — это расчетные задачи. Они проверяют, знает ли ученик формулы и умеет ли он комбинировать их в решении. Максимум за эти задания можно получить 3 балла, обычно их решают всего 17% учеников.

В этих заданиях важно помнить обо всех критериях, по которым оценивается решение экспертами ФИПИ. Распределение заданий по каждому блоку вы можете увидеть в таблице

Работайте с буквами, а не цифрами

Оформление задач, у которых проверяется решение, должно иметь результат в виде большой формулы с буквами. Возьмите за правило не подставлять числа до последнего шага.

В чём реальная польза букв?

  • Точность. Если разделить на калькуляторе 1 на 3, а потом умножить на 6, то получится не 2, а 1,999999998. В ЕГЭ часто ответы получаются красивыми, поэтому дробь с периодом может вызвать лишние сомнения и расфокусировку.
  • Возможность проверить размерность. Да-да, так просили делать в 7-м классе. 2 минуты на проверку размерности – выгодное вложение времени для увеличения вероятности правильного ответа большой задачи.
  • Экономия времени. Если ответ получился в виде дроби, то она может сократиться. Это реальная экономия времени на подсчёт численного ответа.

Колебания

Уравнение описывающее физические системы способные совершать гармонические колебания с циклической частотой ω:

Решение предыдущего уравнения является уравнением движения для гармонических колебаний и имеет вид:

Период колебаний вычисляется по формуле:

Частота колебаний:

Циклическая частота колебаний:

Зависимость скорости от времени при гармонических механических колебаниях выражается следующей формулой:

Максимальное значение скорости при гармонических механических колебаниях:

Зависимость ускорения от времени при гармонических механических колебаниях:

Максимальное значение ускорения при механических гармонических колебаниях:

Циклическая частота колебаний математического маятника рассчитывается по формуле:

Период колебаний математического маятника:

Циклическая частота колебаний пружинного маятника:

Период колебаний пружинного маятника:

Максимальное значение кинетической энергии при механических гармонических колебаниях задаётся формулой:

Максимальное значение потенциальной энергии при механических гармонических колебаниях пружинного маятника:

Взаимосвязь энергетических характеристик механического колебательного процесса:

Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре:

Период гармонических колебаний в электрическом колебательном контуре определяется по формуле:

Циклическая частота колебаний в электрическом колебательном контуре:

Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре описывается законом:

Зависимость электрического тока протекающего через катушку индуктивности от времени при колебаниях в электрическом контуре:

Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре:

Максимальное значение силы тока при гармонических колебаниях в электрическом контуре может быть рассчитано по формуле:

Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре:

Переменный ток характеризуется действующими значениями силы тока и напряжения, которые связаны с амплитудными значениями соответствующих величин следующим образом. Действующее значение силы тока:

Действующее значение напряжения:

Мощность в цепи переменного тока:

Трансформатор

Если напряжение на входе в трансформатор равно U1, а на выходе U2, при этом число витков в первичной обмотке равно n1, а во вторичной n2, то выполняется следующее соотношение:

Коэффициент трансформации вычисляется по формуле:

Если трансформатор идеальный, то выполняется следующее соотношение (мощности на входе и выходе равны):

В неидеальном трансформаторе вводится понятие КПД:

Волны

Длина волны может быть рассчитана по формуле:

Разность фаз колебаний двух точек волны, расстояние между которыми l:

Скорость электромагнитной волны (в т.ч. света) в некоторой среде:

Скорость электромагнитной волны (в т.ч. света) в вакууме постоянна и равна с = 3∙108 м/с, она также может быть вычислена по формуле:

Скорости электромагнитной волны (в т.ч. света) в среде и в вакууме также связаны между собой формулой:

При этом показатель преломления некоторого вещества можно рассчитать используя формулу:

Основные ошибки при подготовке к ЕГЭ по физике

Начать готовиться слишком поздно. Как подготовиться к ЕГЭ за месяц? Отвечаем: толком никак. Как показывает практика, начинать нужно за год.

Тупо зубрить формулы и законы. Для успешной сдачи экзамена необходимо глубокое понимание сути вещей. Простая зубрежка будет бесполезной тратой времени.

Именно поэтому так сложно подготовиться к испытанию самостоятельно. Если у вас есть возможность, найдите хорошего репетитора и занимайтесь с ним. Особенно, если времени осталось не так много. Такой способ подготовки будет гораздо продуктивнее.

В нашем отдельном материале уже собрано более 40 основных физических формул. Не благодарите и пользуйтесь при решении задач.

Полагаться на хорошие школьные оценки. Даже если в школе у вас 5 по физике, ошибочно полагать, что для ЕГЭ этого достаточно. 

Помощь в решении любых задач можно получить в профессиональном студенческом сервисе. Наши эксперты подробно объяснят ход решения и помогут разобраться в сложных темах.

Основные теоретические сведения

Импульс тела

Импульсом (количеством движения) тела называют физическую векторную величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р. Импульс тела равен произведению массы тела на его скорость, т.е. он рассчитывается по формуле:

Направление вектора импульса совпадает с направлением вектора скорости тела (направлен по касательной к траектории). Единица измерения импульса – кг∙м/с.

Изменение импульса одного тела находится по формуле (обратите внимание, что разность конечного и начального импульсов векторная):

где: pн – импульс тела в начальный момент времени, pк – в конечный. Главное не путать два последних понятия.

Абсолютно упругий удар – абстрактная модель соударения, при которой не учитываются потери энергии на трение, деформацию, и т.п. Никакие другие взаимодействия, кроме непосредственного контакта, не учитываются. При абсолютно упругом ударе о закрепленную поверхность скорость объекта после удара по модулю равна скорости объекта до удара, то есть величина импульса не меняется. Может поменяться только его направление. При этом угол падения равен углу отражения.

Абсолютно неупругий удар – удар, в результате которого тела соединяются и продолжают дальнейшее своё движение как единое тело. Например, пластилиновый шарик при падении на любую поверхность полностью прекращает свое движение, при столкновении двух вагонов срабатывает автосцепка и они так же продолжают двигаться дальше вместе.

Закон сохранения импульса

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой.

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой. Этот фундаментальный закон природы называется законом сохранения импульса (ЗСИ). Следствием его являются законы Ньютона. Второй закон Ньютона в импульсной форме может быть записан следующим образом:

Как следует из данной формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Аналогично можно рассуждать для равенства нулю проекции силы на выбранную ось. Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

Аналогичные записи можно составить и для остальных координатных осей. Так или иначе, нужно понимать, что при этом сами импульсы могут меняться, но именно их сумма остается постоянной. Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны.

Сохранение проекции импульса

Возможны ситуации, когда закон сохранения импульса выполняется только частично, то есть только при проектировании на одну ось. Если на тело действует сила, то его импульс не сохраняется. Но всегда можно выбрать ось так, чтобы проекция силы на эту ось равнялась нулю. Тогда проекция импульса на эту ось будет сохраняться. Как правило, эта ось выбирается вдоль поверхности по которой движется тело.

Многомерный случай ЗСИ. Векторный метод

В случаях если тела движутся не вдоль одной прямой, то в общем случае, для того чтобы применить закон сохранения импульса, нужно расписать его по всем координатным осям, участвующим в задаче. Но решение подобной задачи можно сильно упростить, если использовать векторный метод. Он применяется если одно из тел покоится до или после удара. Тогда закон сохранения импульса записывается одним из следующих способов:

В этих формулах буквой υ обозначены скорости тел до соударения, а буквой u обозначены скорости тел после соударения. Из правил сложения векторов следует, что три вектора в этих формулах должны образовывать треугольник. Для треугольников применяется теорема косинусов. Если правильно записать соответствующую теорему косинусов, то зачастую получается уравнение из которого можно найти нужную величину. Однако, иногда к правильно записанной теореме косинусов еще нужно будет добавить правильно записанный закон сохранения энергии (смотрите следующий раздел). В этом случае получится система уравнений из которых наверняка можно будет найти нужную величину.

Структура заданий ЕГЭ по физике-2022

Экзаменационная работа состоит из двух частей, включающих в себя 32 задания.

Часть 1 содержит 26 заданий.

  • В заданиях 1–4, 8–10, 14, 15, 20, 25–26 ответом является целое число или конечная десятичная дробь.
  • Ответом к заданиям 5–7, 11, 12, 16–18, 21, 23 и 24 является последовательность двух цифр.
  • Ответом к заданию 13 является слово.
  • Ответом к заданиям 19 и 22 являются два числа.

Часть 2 содержит 6 заданий. Ответ к заданиям 27–32 включает в себя подробное описание всего хода выполнения задания. Вторая часть заданий (с развёрнутым ответом) оцениваются экспертной комиссией на основе критериев.

Темы ЕГЭ по физике, которые будут в экзаменационной работе

  1. Механика (кинематика, динамика, статика, законы сохранения в механике, механические колебания и волны).
  2. Молекулярная физика (молекулярно-кинетическая теория, термодинамика).
  3. Электродинамика и основы СТО (электрическое поле, постоянный ток, магнитное поле, электромагнитная индукция, электромагнитные колебания и волны, оптика, основы СТО).
  4. Квантовая физика и элементы астрофизики (корпускулярноволновой дуализм, физика атома, физика атомного ядра, элементы астрофизики).

Продолжительность ЕГЭ по физике

На выполнение всей экзаменационной работы отводится 235 минут.

Примерное время на выполнение заданий различных частей работы составляет:

  1. для каждого задания с кратким ответом – 3–5 минут;
  2. для каждого задания с развернутым ответом – 15–20 минут.

Что можно брать на экзамен:

  • Используется непрограммируемый калькулятор (на каждого ученика) с возможностью вычисления тригонометрических функций (cos, sin, tg) и линейка.
  • Перечень дополнительных устройств и материалов, использование которых разрешено на ЕГЭ, утверждается Рособрнадзором.

Важно!!! не стоит рассчитывать на шпаргалки, подсказки и использование технических средств (телефонов, планшетов) на экзамене. Видеонаблюдение на ЕГЭ-2022 усилят дополнительными камерами

Баллы ЕГЭ по физике

  • 1 балл — за 1-4, 8, 9, 10, 13, 14, 15, 19, 20, 22, 23, 25, 26, задания.
  • 2 балла — 5, 6, 7, 11, 12, 16, 17, 18, 21, 24, 28.
  • 3 балла — 27, 29, 30, 31, 32.

Всего: 53 баллов (максимальный первичный балл).

Что необходимо знать при подготовки заданий в ЕГЭ:

  • Знать/понимать смысл физических понятий, величин, законов, принципов, постулатов.
  • Уметь описывать и объяснять физические явления и свойства тел (включая космические объекты), результаты экспериментов… приводить примеры практического использования физических знаний
  • Отличать гипотезы от научной теории, делать выводы на основе эксперимента и т.д.
  • Уметь применять полученные знания при решении физических задач.
  • Использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

С чего начать подготовку к ЕГЭ по физике:

  1. Изучать теорию, необходимую для каждого заданий.
  2. Тренироваться в тестовых заданиях по физике, разработанные на основе демонстрационного варианта ЕГЭ. На нашем сайте задания и варианты по физике будут пополняться.
  3. Правильно распределяйте время.

Желаем успеха!

Разделы ЕГЭ по физике

  • Механика — один из самых больших разделов на ЕГЭ. Он составляет около трети всего экзамена.
  • Электродинамика — еще один большой раздел по количеству баллов. Она также составляет около трети всего экзамена.
  • Молекулярная физика занимает третье место. Около 25% баллов на ЕГЭ можно получить именно за нее.
  • Квантовая физика замыкает наш список. В сумме все задания по квантовой физике могут принести около 10% баллов.

Хотите круто подготовится к ЕГЭ по физике? Вам поможет учебный центр MAXIMUM! Все наши преподаватели сами сдавали этот экзамен на хороший балл. Мы ежегодно изучаем изменения ФИПИ и корректируем курсы, исходя из этого. Читайте подробнее про наши курсы и выбирайте подходящий!

«СОТКА»

Сайт: ; https://vk.comСтоимость: от 2950 р./мес.

Самая рекомендуемая онлайн-школа подготовки к ЕГЭ и ОГЭ в России. 237 стобалльников в 2020 году.

Подготовка к ЕГЭ по физике — это месячный курс, где ты пройдешь все темы с самого начала, делая упор на практику.

Есть 3 тарифа, в них входит:

КМС — Экстра Лайт

  • 12 онлайн-занятий + доступ к записи с тайм-кодами
  • Инновационная платформа
  • Авторские полезные материалы
  • Ментор, курирующий тебя и твою группу
  • Входной и итоговый тест

КМС — Экстра Стандарт

Лайт плюс:

  • Экспертный вебинар с коучем
  • Вебинар от психолога
  • Квест — тест сложных заданий
  • 2 пробных варианта ЕГЭ
  • Гайд по оформлению второй части

КМС — Экстра Про

Стандарт плюс:

  • Зачёт по пройденному материалу
  • Вебинар по практике сложных заданий ЕГЭ
  • Онлайн-тренажёр по всем темам ЕГЭ

Задания базового уровня сложности на 1 балл

Здесь выпускнику предлагается решить несложные задания в одно или два действия. В этих заданиях проверяется знание теории, формул, законов, а также умение применять алгоритмы и работать с графиками.

В этих задачах часто ошибаются в размерностях. Например, просят привести ответ в килоджоулях, а ученики пишут в джоулях, теряя на этом балл

Обращайте внимание на требуемую размерность ответа и не забывайте переводить величины в СИ

А теперь разберем конкретные примеры.

Пример № 1: Механика

Важно знать законы!

Это типичная задача по механике на 1 балл. Здесь мы вспоминаем про закон сохранения энергии: кинетическая энергия движения шайбы внизу будет равна потенциальной энергии шайбы на высоте h.

Заметим, что масса шайбы дана нам в граммах, а ответ нужно привести в метрах. Поэтому переведем в граммы в килограммы и получим заветный правильный ответ.

Пример № 2: Молекулярная физика

Важно знать алгоритмы!

В этой задаче одними формулами и законами не обойтись. Мои ученики всегда удивляются, насколько простыми становятся задания, если использовать алгоритм.

В молекулярной физике в заданиях на наименьшее и наибольшее значение всегда следует действовать по алгоритму:

  1. Записать уравнение Менделеева-Клапейрона
  2. Переписать уравнение в формате: величина по вертикальной оси = коэффициент * величину по горизонтальной оси.
  3. Проанализировать коэффициент k, который является углом наклона прямой.

Если числитель маленький или знаменатель большой, то коэффициент должен быть маленьким.

Если числитель большой или знаменатель маленький, то коэффициент должен быть большим.

В нашей задаче спрашивают про наименьшее значение объема.  Перенесем объем в правую часть уравнения и проанализируем коэффициент. 

Маленький объем V => маленький знаменатель => большая дробь => большой коэффициент => большой угол наклона.

«ЕГЭ-Студия»

Онлайн-курс: Физика 100 баллов от Вадима Муранова — победителя всероссийского конкурса «Учитель года». Стаж преподавания — 24 года, стаж подготовки к ЕГЭ — 13 лет.

Курс рассчитан на ученика с любым уровнем подготовки по физике. Содержит 60 тем и свыше 1000 задач. Каждая тема состоит из теоретической части с примерами решения задач и практической части с задачами (тренажер задач). К каждой задаче дано подробное решение с пояснениями.

Теория написана не сухим и формальным языком учебников, а просто и доступно. Задачи распределены по возрастанию сложности и полностью соответствуют содержанию ЕГЭ по физике. План онлайн-занятий размещен на сайте.

На курсе мы разберем все разделы физики, встречающиеся на ЕГЭ:

  • Механика (задания 1-7, 27, 28, 29)
  • Молекулярно-кинетическая теория и термодинамика (задания 8-12, 25, 27, 28, 30)
  • Электродинамика и оптика (задания 13-18, 25, 26, 27, 28, 31, 32)
  • Квантовая, атомная и ядерная физика (задания 19-21, 26, 27, 28, 32)
  • Экспериментальная физика (задания 22, 23, 27)

Астероиды Солнечной системы

В этом задании могут обсуждаться вопросы астероидов, комет и прочих космических объектов, входящих в Солнечную систему. Вспомним, что Солнечная система состоит из 8 планет. Четыре планеты – это планеты земной группы (Меркурий, Земля, Венера и Марс) и 4-ре планеты гиганты (Сатурн, Юпитер, Нептун и Плутон). Между орбитами Марса и Юпитера находятся астероиды главного пояса — примерно от 2.2 а.е. до 3.6 а.е.

Первый закон Кеплера

Рассматриваемые орбиты астероидов представляют собой эллипсы. Эксцентриситет орбиты – это числовая характеристика, которая говорит о «вытянутости» орбиты. (см.Рис.5) Если эксцентриситет равен нулю, то это значит, что орбита – идеальный круг. Эксцентриситет вычисляется по следующей формуле:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector