Демонстрационный вариант гвэ 11 класс
Содержание:
Что проверяет и оценивает ГВЭ-аттестат?
Недавно на своей странице в «Фейсбуке» я опубликовал содержание задачи 5, в которой выпускник школы должен найти наименьшее из девяти четырехзначных чисел, и задал вопрос: «Почему аттестат об окончании средней школы нужно вручать за выполнение заданий, с которыми справится выпускник начальной школы?»
Можно ли найти достойное применение задачам из ГВЭ-аттестат: найти катет, если известна гипотенуза и другой катет (задание 7); найти 13% от 20 тысяч рублей (задание 2); установить, что 4 часа – это треть от 12 часов, и 360 градусов разделить на 3 (задание 8); рассчитать, сколько баночек йогурта можно купить на 100 рублей, если известна цена одной баночки (задание 1)? На мой взгляд, можно: развитие навыков устного счета для школьников 5-9-х классов. Примерно 50 лет назад в школе, расположенной на рабочей окраине Калуги, моя учительница математики Мария Васильевна использовала подобные задачки для проведения устных математических турниров в 7-м классе.
Вспоминаю об этом не для того, чтобы посокрушаться: раньше, дескать, все школьники математику любили и понимали, а сейчас выпускникам средней школы предлагаются вот такие задачи. Посокрушаться и повспоминать мы все любим, но гораздо важнее понять, что проверяет/оценивает нынешний ГВЭ-аттестат и что должен проверять/оценивать.
В законе №273-ФЗ «Об образовании в Российской Федерации» сказано, что ГИА проводится «в целях определения соответствия результатов освоения обучающимися основных образовательных программ соответствующим требованиям федерального государственного образовательного стандарта». Получается, выпускник, решая 7 простеньких задачек, демонстрирует, что результат освоения им образовательной программы средней школы соответствует требованиям ФГОС, хотя для решения этих задач можно вообще не учиться в 10-11-х классах. Довольно странно, не находите?
Часть II
Задания этой части требуют полного обоснованного решения и верного ответа.
Задание 11
а) Решите уравнение \((81^{\cos x})^{\sin x} = 9^{-\sqrt3 \cos x}.\)
б) Найдите все корни этого уравнения, принадлежащие отрезку \(\left \).
Решение.
а) Применим свойства показательной функции, чтобы выравнять основания. Т.к. \(81 = 9^2\), и при возведении степени в степень показатели перемножаются, получим \
Теперь можно «отбросить» основания, чтобы уравнять показатели \ Получилось стандартное тригонометрическое уравнение среднего уровня сложности. Преобразуем его к произведению сомножителей. \ Произведение может равняться нулю тогда и только тогда, когда какой-либо из его сомножителей равен нулю, т.е. либо \(\cos{x} = 0\), либо \( 2\sin{x} +\sqrt3 = 0.\)
В первом случае имеем \
Во втором случае имеем \
Все полученные значения нужно включить в ответ.
б) В предыдущей части задачи чертежи на круге носили вспомогательный характер, ответ можно было написать по формулам из учебника. Для ответа на второй вопрос чертёж нужен. Можно использовать
числовую ось
или тригонометрический круг
на которых нужно выделить заданный промежуток и соотнести с этим рисунком полученные в первом пункте ответы. Указанный промежуток относится к первому обороту ПО часовой стрелке или к первому отрицательному периоду.
Ответ:
a) \( \dfrac{\pi}{2} + \pi k, k\in Z,\; -\dfrac{\pi}{3} + 2\pi n, n\in Z,\; -\dfrac{2\pi}{3} + 2\pi m, m\in Z; \)
б) \( \dfrac{3\pi}{2}, -\dfrac{2\pi}{3}, -\dfrac{\pi}{2}. \)
Показать ответ
Комментарий к заданию.
Это обычное уравнение среднего уровня сложности. Таких уравнений вы должны были немало решать на уроках независимо от того, в какой форме планировали сдавать ЕГЭ. По формулировке задания, требованиям к оформлению решения и критериям оценивания оно напоминает задание 13 профильного ЕГЭ по математике. Однако по сложности, прежде всего по сложности предварительных преобразований, оно гораздо легче. Я рекомендую готовиться к этой части экзамена не по материалам ЕГЭ, а по учебнику алгебры и тетрадям.
Задание 12
В тетраэдре ABCD ребро AD имеет длину 6, а все остальные рёбра равны 4.
а) Докажите, что прямые AD и BC перпендикулярны.
б) Найдите площадь сечения тетраэдра плоскостью, содержащей прямую BC и перпендикулярной прямой AD.
Решение.
Рассмотрим треугольники ADC и ADB. Они равнобедренные и равные, т.к. по условию задачи AC = CD = AB = BD = 4 и AD их общая сторона.
а) Пусть M середина стороны AD, тогда отрезки MC и МВ – медианы равнобедренных треугольников являются их высотами. Поэтому \( AD\perp MC\) и \(AD \perp MB.\) В соответствии с признаком перпендикулярности прямой и плоскости имеем AD перпендикулярна всей плоскости BCM.
Теорема. Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения, то она перпендикулярна плоскости.
Поэтому AD перпендикулярна и прямой BC, лежащей в плоскости BCM.
Определение. Прямая называется перпендикулярной к плоскости, если она перппендикулярна к любой прямой, лежащей в этой плоскости.
Доказательство закончено.
б) Найти площадь сечения тетраэдра плоскостью, содержащей прямую BC и перпендикулярной прямой AD, означает найти площадь треугольника MBC. Мы, фактически, уже доказали, что это то самое сечение.
Сторону МС найдём по теореме Пифагора из треугольника AMC, в котором гипотенуза AC = 4, катет АМ = 6:2 = 3 (M – середина AD.) \
\(MB = МС = \sqrt{7}\), т.к. это медианы равных треугольников. BC = 4.
Нам известны все стороны треугольника, значит можно найти площадь по формуле Герона \(S=\sqrt{p(p−a)(p−b)(p−c)},\) где р — полупериметр, a,b,c — длины сторон треугольника.
Находим \
Те, кто не помнит формулу Герона или затрудняется в алгебраических преобразованиях с радикалами, могут провести в треугольнике МВС высоту к стороне ВС и найти её величину по теореме Пифагора.
Ответ: б)\(2\sqrt{3}.\)
Показать ответ
Вывод: По моему мнению, оценки «три» или «четыре» на ГВЭ будет получить легче, чем на базовом ЕГЭ, потому что за то же время нужно решить меньшее число заданий. Однако оценку «пять» будет получить сложнее, так как присутствуют задания с развёрнутым ответом, к которым вы ранее не готовились. В любом случае желаю удачи!
Перейти к задачам профильного ЕГЭ.Вернуться на главную страницу сайта.
Математика для аттестата
Как следует из шкалы, для получения аттестата выпускник должен решить не менее 7 заданий из 14. Предлагаю всем читателям, в том числе и тем, кому школьная программа по математике категорически не давалась и казалась чересчур сложной, оценить некоторые задания из демонстрационного варианта ГВЭ-аттестат.
Для получения аттестата требуется набрать 7 первичных баллов. Здесь приведены условия 8 задач, одна – запасная, на всякий случай. Можно привести еще пару заданий примерно такой же сложности. Напоминаю, эти задачи не нужно решать устно или на скорость, как в блице, – 20 секунд, скажем, на одну задачу. Не нужно записывать решения – только ответ. Если на каждую задачу выделить 10 минут, то после решения восьми задач останется еще 40 минут на проверку.
Еще раз сообщу, что формулу для вычисления корней квадратного уравнения и теорему Пифагора запоминать не требуется, поскольку все это и еще многое другое есть в справочных материалах.
Аттестат (не)зрелости
В заключение еще раз подчеркну, что задания аттестационных работ, как бы ни называлась аттестационная процедура – ЕГЭ или выпускной экзамен, оказывают влияние на сам процесс обучения. В частности, многие учащиеся, не получающие удовольствия от учебы и/или испытывающие трудности с освоением учебной программы средней школы, после знакомства с заданиями ГВЭ-аттестат по математике вполне могут сделать вывод, что уж на тройку-то задачки про йогурт и дешевые модели смартфона они точно решат, не прилагая дополнительных усилий.
Помню, с какой болью говорил заслуженный учитель РФ, директор московской школы №109 Евгений Ямбург на Московском международном форуме «Город образования» о детях, не обладающих выраженными способностями, плохо успевающих, имеющих проблемы с грамотностью, коммуникацией и социализацией. Талантливые и одаренные, отмечал Евгений Александрович, вероятнее всего, найдут свой путь в жизни или вообще уедут, а вот те, кто в школе имел очевидные проблемы с освоением образовательной программы, дети с различными видами девиации останутся, вырастут и в итоге будут определять жизнь в регионе.
В течение последних 20-30 лет происходило постепенное «снижение планки», упрощение требований к выпускнику школы, претендующему лишь на тройку. Если слегка утрировать, то можно сказать, что Рособрнадзор и Минпросвещения приближают тот день, когда аттестат о среднем общем образовании получит каждый выпускник школы, знающий таблицу умножения и правописание буквосочетаний жи-ши.
В истории Российской империи, а затем и СССР были периоды, когда документ об окончании школы именовался аттестатом зрелости. Сейчас, оценивая задания ГВЭ-аттестат по математике и условия получения тройки, я прихожу к выводу, что документ об окончании средней школы, к моему глубокому сожалению, вполне можно переименовать в аттестат незрелости.
Зачем гуманитарию математика?
Еще один типичный комментарий при обсуждении заданий итоговой аттестации по математике: «Не понимаю, зачем в школе заставляют всех учить и сдавать математику. Мне, филологу/юристу/историку с высшим образованием, человеку, многого добившемуся в жизни, математические знания не потребовались ни разу».
Комментариев такого рода в соцсетях, действительно, много, но в жизни таких людей, которые способны обходиться без математики, встречать не доводилось. Напротив, много раз слышал, как взрослые люди сожалели, что в школе игнорировали изучение математики, а теперь не могут рассчитать необходимую дозировку лекарственного средства для ребенка или понять условия банковского договора.
Недавно пришлось объяснять взрослому человеку, что начальник, объявляющий об уменьшении зарплаты на 50% в связи с временными трудностями и обещающий ее повысить на 50% через два месяца, – обычный мошенник, поскольку зарплата в этом случае через два месяца будет на четверть меньше нынешней. В процессе объяснения выяснилось, что с элементарными задачами на проценты, подобными заданию 2 из ГВЭ-аттестат, этот взрослый человек уверенно справляется.
Тогда, может быть, задачи с процентами на выпускном экзамене должны быть немного сложнее, чем вычисление 13% от 20 тысяч? Например, хотя бы такие: «Девочек в классе на 25% больше, чем мальчиков. На сколько процентов мальчиков меньше, чем девочек?» Эта задача только на первый взгляд не имеет отношения к будущей взрослой жизни, а в действительности умение решать подобные задачи пригодится не раз.
Не преграды, а возможности
При обсуждении моего сообщения в «Фейсбуке» была высказана мысль, что невыдача гуманитарию аттестата за то, что он не овладел школьной математикой, никому не пойдет на пользу, в том числе и государству. Речь, прошу заметить, идет не о дифференциалах, интегралах, тригонометрических уравнениях, задачах с параметром, а о нахождении из нескольких четырехзначных чисел минимального, решении квадратного уравнения, расчете процента от числа и применении теоремы Пифагора.
У меня нет точного ответа на вопрос, какими должны быть требования для получения аттестата, но мне известны исследования, которые показывают, что чем слабее знания, умения и навыки выпускника по математике и родному языку, чем в меньшей степени он способен извлекать информацию из простых текстов, в том числе рабочих инструкций, инструкций по применению лекарственных препаратов и банковских договоров, тем больше от этого будет страдать он сам и государство. Эту взаимосвязь можно наблюдать в разных странах. В некоторых провинциях Канады добились удивительных результатов, помогая школьникам, испытывающим трудности с освоением школьной программы: повышение уровня функциональной грамотности способствовало росту в регионе производительности труда и ВВП, уменьшению затрат на пособия по безработице и снижению заболеваемости.
Я выступаю не за преграды, а за возможности, не за то, чтобы кому-то не давать аттестат, а за то, чтобы у нынешних выпускников школ задания, которые встречаются в ГВЭ-аттестат этого года, не вызывали трудностей. В том числе и у тех, кто не собирается в вузы. А вот сами задания ГВЭ-аттестат, с моей точки зрения, сейчас таковы, что их можно считать своего рода сигналом выпускникам: не стоит учиться, напрягаться – сдадут все, кто досидел в школе до конца 11-го класса.